edexcel

Mark Scheme (Results)
June 2014

Pearson Edexcel International GCSE Chemistry (4CH0) Paper 1C Science Double Award (4SC0) Paper 1C

Pearson Edexcel Level 1/Level 2
Certificate
Chemistry (KCH0) Paper 1 C
Science (Double Award) (KSC0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code UG038368
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Accept	Reject	Marks
1 (a)	B - (filter) funnel			1
	D - test tube/boiling tube			1
	E-pipette		teat pipette/dropping	1
	F - beaker			1
(b)	M1 - A			1
	M2-E			1

(Total marks for Question $1=6$ marks)

Question number	Answer	Accept	Reject	Marks
2 (a) (i)	D - hydrocarbons		1	
(b)	S U R V T			
First mark for S in box 1 AND R in box 3				
Second mark for V in box 4 $\underline{\text { AND T in box 5 }}$(b)		2		

(Total marks for Question $2=3$ marks)

Question number	Expected Answer	Accept	Reject	Marks
3 (a) (i) (ii) (iii)	12 M1-2 M2 - two electrons in outer/valence shell Award M2 if M1 missing but not if incorrect Ignore references to magnesium and 2.8.2 X^{2+}	roman numeral Mg^{2+}		1 1 1 1
(b)	$\begin{aligned} & \text { M1 }-(79 \times 24)+(10 \times 25)+(11 \times 26) \\ & \text { M2 - divide by } \underline{100} \\ & \text { M3 - } 24.3 \end{aligned}$ Mark M2 and M3 csq on M1 if one minor slip in numbers in M1 (eg 97 instead of 79 or 25 instead of 24) M3 dep on M2 Correct answer with no working scores 3 IGNORE units	$(0.79 \times 24)+(0.10 \times 25)+(0.11$ x 26) for 2 marks 24.32 with no working scores 2		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question number	Answer	Accept	Reject	Marks
4 (a)	to increase the rate/speed (of the reaction) IGNORE to start the reaction/to provide energy/references to the copper(II) oxide will not react without heat / to make it dissolve faster / to give particles more energy	to overcome the activation energy/to provide activation energy (for the reaction)	Answers referring to copper instead of copper(II) oxide	1
(b)	it stops disappearing OR there is a (black) suspension/solid /copper(II) oxide OR the mixture/it turns cloudy/black IGNORE crystals	stops dissolving precipitate/ppt	any colour other than black	1
(c)	to remove (unreacted/excess) copper(II) oxide IGNORE references to impurities/crystals	to remove (unreacted/excess) solid to obtain a solution (of copper(II) sulfate)	to separate copper(II) oxide from sulfuric acid	1
(d)	copper(II) sulfate/the crystals are less soluble in cold water (than in hot water) OR solubility decreases with temperature IGNORE reference to water evaporating	```reverse argument ions join together (to form a lattice) ionic lattice forms```	references to freezing	1

| (e) | blue
 IGNORE shades of colour | any colour other than
 blue |
| :---: | :--- | :--- | :--- |
| (f) | on filter paper/kitchen towel/tissue paper
 OR
 leave / in a warm place / in the sun / on
 a radiator / near a window / in a
 (warm/drying) oven | desiccator |

(Total marks for Question $4=6$ marks)

Question number	Answer	Accept	Reject	Marks
5 (a) (i)		lower case letters		1
(ii)	D			1
(iii)	A			1
	C			1
(b)	M1 - (a substance) containing (two or more) elements IGNORE atoms for M1 only M2 - bonded (together) / chemically combined (in a fixed ratio)	chemically joined	mixture for M1 only molecules/particles bonded, etc for M1 and M2	1 1
(c) (i)	M1 - Na loses electron(s)			1
	M2-Cl gains electron(s)			1
	M3-Na becomes 2.8 AND chlorine becomes 2.8.8			1
	If incorrect number of electrons transferred, max 2			
	IGNORE references to full shells			
	max 1 for mention of covalent bonding			
	All 3 marks can be scored from correct dot and cross diagrams showing electron transfer			

(Total marks for Question $5=11$ marks)

Question number	Answer	Accept	Reject	Marks
6 (a) (i)	$13(.0)$		1	
	(ii)	1.4		
	(iii)	$25(.0)$		1
(b)	indigo			
	red		1	
(c)	NaOH $+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ IGNORE state symbols even if incorrect	$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$		1

(Total marks for Question $6=6$ marks)

Question number	Answer	Accept	Reject	Marks
7 (a)	magnesium chloride/ MgCl_{2} oxygen/ O_{2} sulfuric (acid)/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ IGNORE hydrogen sulfate If name and formula given, both must be correct	carbon dioxide/ CO_{2}		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(b)	$\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}$ IGNORE state symbols even if incorrect Penalise incorrect symbols and failure to use subscripts			1

(Total marks for Question 7 = 4 marks)

Question number	Answer	Accept	Reject	Marks
8 (a)	M1 - for both electron diagrams correct IGNORE inner electrons of N even if incorrect M2 - for both charges correct M3 - for correct ratio of ions	any combination of dots and crosses		3
(b)	$6 \mathrm{Li}+\mathrm{N}_{2} \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}$ M1 - all formulae correct M2 - balanced M2 dep on M1 IGNORE state symbols even if incorrect	multiples and fractions		2
$\text { (c) } \quad \text { (i) }$	I aq g M1 - any number from 8 to 14 M2 - $\mathrm{LiOH} /$ lithium hydroxide is a base/alkali OR hydroxide ions/ OH^{-}formed/present	ammonia / metal hydroxides / Group 1 hydroxides are bases/alkalis		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

(d)	ions cannot move OR ionic compounds only conduct when molten/in solution IGNORE references to electrons	ionic compounds do not normally conduct when solid	1

(Total marks for Question $8=9$ marks)

Question number	Answer	Accept	Reject	Marks
$9 \quad \text { (a) (i) }$ (ii) (iii)	A C C	Methane Ethene Ethene		1 1 1
(b)	$\begin{aligned} & \mathrm{M} 1-\text { (molecular) } \mathrm{C}_{4} \mathrm{H}_{10} \\ & \mathrm{M} 2-\text { (empirical) } \mathrm{C}_{2} \mathrm{H}_{5} \end{aligned}$ ECF from molecular formula	$\begin{aligned} & \mathrm{H}_{10} \mathrm{C}_{4} \\ & \mathrm{H}_{5} \mathrm{C}_{2} \end{aligned}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	1 1
(c) (i) (ii)	M1 - (name) alkane(s) M2 - (general formula) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ IGNORE bond angles		missing Hs and bonds	1 1 1

(Total marks for Question $9=11$ marks)

Question number	Answer	Accept	Reject	Marks
10 (a) (i) (ii)	Any two from: - good conductor of heat - high melting point - malleable Apply list principle M1 - ductile M2 - good conductor of electricity Apply list principle Answers can be given in any order			2
(b) (i) (ii)	strong(er) IGNORE references to density and rusting lower density / resists corrosion IGNORE lighter	other correct descriptions does not rust greater strength to weight ratio		1 1
(c) (i) (ii)	heat / thermal energy / heat energy is given out OR transferred/lost to the surroundings IGNORE references to bond formation and breaking M1 - (aluminium/it is) more reactive M2 - (aluminium/it) displaces iron (from its oxide)	produced produces an increase in temperature it gets hot iron is less reactive replaces it/aluminium takes oxygen away from iron (oxide)		1 1 1

(iii)	M1 - aluminium	loses (three) electrons /oxidation number increases combines with oxygen / forms aluminium oxide	1
M2 - gains oxygen			
M2 DEP on M1			
IGNORE references to magnesium	1		
(d)	temperature reached \geq m.pt of iron IGNORE exothermic / heat produced / lots of energy produced	high temperature reached / gets very hot	1

(Total marks for Question $10=12$ marks)

\begin{tabular}{|c|c|c|c|c|}
\hline Question number \& Answer \& Accept \& Reject \& Marks \\
\hline 11 (a) \& \begin{tabular}{l}
large hydrocarbons/alkanes/molecules become small ones \\
IGNORE references to forming alkenes/ethene/ more useful molecules
\end{tabular} \& \begin{tabular}{l}
(large) hydrocarbons or alkanes or molecules become smaller ones \\
long chains become short chains
\end{tabular} \& references to polymers \& 1 \\
\hline (b) \& \begin{tabular}{l}
M1 - (add to) bromine (water)/ \(\mathrm{Br}_{2}\) \\
IGNORE Br \\
M2 - (bromine) decolourised/turns colourless \\
IGNORE starting colour and clear \\
M2 dep on M1, but can be scored for a near miss in M1,eg Br or bromide (water)
\end{tabular} \& \begin{tabular}{l}
(acidified) potassium manganate(VII) \\
decolourised/turns colourless
\end{tabular} \& \& 1
1 \\
\hline (c) \& \begin{tabular}{l}
M1 - (catalyst) silica / silicon dioxide / alumina / aluminium oxide \\
N.B. if both name and formula given, mark the name only
\[
\text { M2 }-600-700{ }^{\circ} \mathrm{C}
\]
\end{tabular} \& \begin{tabular}{l}
correct formula aluminosilicate / zeolite \\
any value or range within this range equivalent temperatures in Kelvin
\end{tabular} \& \& 1

1

\hline
\end{tabular}

(Total marks for Question $11=5$ marks)

Question number	Answer	Accept	Reject	Marks
12 (a) (i) (ii)	M1 - divide all the masses by respective A_{r} M2 - to give 0.02: 0.02: 0.04 M3 - (mole) ratio is 1:1:2 Correct ratio or empirical formula with no working scores $0 / 3$ $\begin{aligned} & \text { M } 1-204 \div 102=2 \\ & \text { OR } 102 \times 2=204 \end{aligned}$ $\mathrm{M} 2-\mathrm{C}_{2} \mathrm{~F}_{2} \mathrm{Cl}_{4}$ Correct answer with no working scores 2 marks	$(2 \times 12)+(2 \times 19)+(4 \times 35.5)=$ symbols in any order	division by atomic number/division upside down for all marks F for F	1 1 1 1 1
(b)	M1 - all four bonding pairs correct M2 - rest of diagram correct M2 dep on M1	F for F any combination of dots and crosses		2

| | IGNORE inner shell electrons even if
 incorrect
 Award 1 mark for similar molecules,
 eg CCl 4 |
| :--- | :--- | :--- | :--- |$|$| | | |
| :--- | :--- | :--- |

(Total marks for Question $12=7$ marks)

Question number	Answer	Accept	Reject	Marks
13 (a)	covalent			1
(b) (i) (ii)	M1 - giant covalent / giant structure/lattice/network M2 - strong (covalent) bonds/many (covalent) bonds M3 - lot of (thermal/heat) energy required M4 - to break bonds M1 -intermolecular forces(of attraction) / forces (of attraction) between molecules M2 - are weak / little (thermal/heat) energy required (to overcome the forces) M2 DEP on M1 Weak bonds on its own = 0	macromolecular giant molecular intermolecular bonds in place of intermolecular forces	Max 1 if bonding stated to be intermolecular/ionic/metallic any indication that covalent/ionic/metallic bonds are broken scores 0	
(c)	theory B AND since there are no/fewer gas molecules in space OR there is no/less gas in space OR space is a vacuum	fewer gas molecules at high altitude/less gas at high altitude air/specified gas in place of gas ORA		1

(d)	high temperature AND since (forward) reaction is endothermic/absorbs heat IGNORE references to le Chatelier's principle		1

(Total marks for Question $13=9$ marks)

Question number	Answer	Accept	Reject	Marks
14 (a)	 M2 - any suitable use, eg: - plastic bags - buckets/bowls - storage bottles (for food, drinks, chemicals) - garden furniture - gas pipes - rubbish bins - storage tanks for fuel - cling film - packaging - clothing - insulation (for electric cables) Please research any unfamiliar use M3 - poly(propene) M4 - IGNORE bond angles	continuation bonds not going through brackets polypropene polypropylene methyl group attached to any carbon methyl group displayed	just plastic	1 1 1 1

$\left.\begin{array}{|c|l|l|l|}\hline \text { (b) } & \begin{array}{l}\text { Any two from } \\ M 1-\text { (many) small molecules/monomers join up } \\ M 2-\text { double bond becomes single bond/ it becomes } \\ \text { saturated } \\ M 3-\text { increase in mass/chain length/size }\end{array} & \begin{array}{l}\text { OWTTE } \\ \text { double bond breaks } \\ \text { and single bond forms }\end{array} & \end{array}\right\}$
(Total marks for Question $14=9$ marks)

Question number	Answer	Recept	Reject	Marks
15 (a) (i)	$\mathrm{M} 1-\mathrm{M}_{\mathrm{r}}(\mathrm{NaOH})=40$			
$\mathrm{M} 2-10(.0) \div \mathrm{M} 1$				
$\mathrm{M} 3-0.25(\mathrm{~mol})$				
Correct answer with no working scores 3				
$\mathrm{M} 1-0.25 \times 1000 \div 250$				
(ii)		1		
$\mathrm{M} 2-1(.0)\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$ Correct answer with no working scores 2 Mark csq throughout	M3 from (a) (i) $\div 250 / 0.001$ for 1 mark	1		

(b) (i) (ii) (iii)	M1 - (reading at end) 25.20 M2 - (reading at start) 1.65 M3 - (volume added) 23.55 Award 1 mark for correct end and start readings in reverse order Mark M3 csq on M1 and M2 Penalise lack of two decimal places once only in a correct answer M1 - (colour at start) yellow M2 - orange/pink different volumes can be measured / continuously graduated / addition (of acid) can be controlled / volume required is not known IGNORE references to precision or accuracy	red pipette measures one volume only	1 1 1 1 1 1 1
(c) (i) (ii)	$\begin{aligned} & \mathrm{M} 1-2(.00) \times 200 \div 1000 \\ & \mathrm{M} 2-0.4(0)(\mathrm{mol}) \end{aligned}$ $\text { Correct final answer with no working scores } 2 \text { marks }$ $\begin{aligned} & \mathrm{M} 1-n\left(\mathrm{CO}_{2}\right)=0.2(0) / 1 / 2 \text { of } \mathrm{M} 2 \text { from }(\mathrm{c})(\mathrm{i})(\mathrm{mol}) \\ & \mathrm{M} 2-\operatorname{mass}\left(\mathrm{CO}_{2}\right)=8.8(0)(\mathrm{g}) / \mathrm{M} 1 \times 44 \end{aligned}$ $\text { Correct final answer with no working scores } 2 \text { marks }$	400 for 1 mark	1 1 1 1

(Total marks for Question $15=15$ marks)

